Glaucoma and Ocular Surface Disease

- 1. Comorbidity
 - a. OSD
 - i. Present in ~15% of those 65 & up; Much more common in persons w/ glaucoma
 - ii. Up to 60% of glaucoma patients have OSD
 - b. Glaucoma
 - i. Irreversible optic neuropathy
 - ii. Expected to be 80M worldwide in 2020
 - iii. IOP is only modifiable risk factor
 - iv. Up to 40% of persons with glaucoma require more than one IOP lowering agent in the US
- 2. Parallels in Glaucoma and OSD
 - a. Chronic diseases
 - b. Often mismatch of signs and symptoms
 - c. Assessments of each can vary from doctor to doctor
 - d. Diagnostic tests often variable and not conclusive of disease and/or progression
 - e. Vision can be affected by both and both can affect quality of life
 - f. Treatment can be complex with many treatment options available and variable on effectiveness
 - g. Both require at home care on part of the patient (compliance) to be effectively managed
 - h. Neither have a cure
- 3. Ocular Surface Disease
 - a. Review normal tear film anatomy
 - b. Review DEWS II
 - i. Review new definition of dry eye
 - ii. Figure to show how to diagnosis/test for dry eye
 - iii. Table from DEWS that outlines the treatment based on severity
 - c. Managing dry eye in the glaucoma patient
 - i. Remember dry eye is multifactorial, look for all contributing factors, especially modifiable treatments or activities
 - Past eye surgeries (esp glc, high blebs may make patients poor candidate for in office dry eye treatments ie mibo/lipiflow, but MG probing or tear care may be beneficial)
 - Review oral medications; (list offenders) some may be modifiable *allergy meds*
 - 3. Systemic disease/medications- use of CPAP (encourage well fit mask and adequate lubrication and/or goggles) Parkinsons (decreased blink rate, stress increase lubrication)
 - 4. Environment- device use, fans, heat in winter; discuss use of moisture chamber goggles, no ceiling fan use, humidifiers
 - 5. Gender and age; decreased tear quantity and quality with increased age; hormonal contribution
 - 6. Look closely at the lid margins
 - a. Identify rosacea and treat it

- b. MGD- very prominent in glc patients esp on PGA
 - i. Treat MGD: w/c's and in office tx's (microblepharoexfoliation/ thermopulsation)
- c. Mechanical issues
 - i. Incomplete blinking
 - ii. Lagophthalmos (nocturnal)
 - iii. Conjunctivalchalasis
- d. CL wear
 - i. Avoid soft lenses and consider RGP/scleral design if CL needed
- ii. Patient education
 - 1. Key to success of both dry eye and glaucoma management
 - 2. Neither can be cured
 - 3. OSD can affect compliance to topical glaucoma medications that burn→increased risk of progression of disease
- iii. Treatment options for dry eye in the presence of glaucoma
 - 1. Pay close attention to the medications the patient is on and/or ones that you may be starting patients on
 - a. Preservatives- A 1999 prospective epidemiological survey of over 4K patients concluded that signs and symptoms were less prevailing with non-preserved agents. Also, most reactions were reversible upon discontinuing preserved agents
 - i. BAK
 - Quaternary ammonium compound w/ hydrophilic and hydrophobic elements (highly hydrosoluble) which makes them cause bacterial cell death by interacting w/ lipid components in the cell membrane→instability and release of cell contents
 - 2. Effect against Gram + and Gram -
 - 3. Most common preservative in ophthalmic medications
 - 4. Used in both dry eye medications and glaucoma medications
 - ii. Alternative preservatives
 - 1. Polyquaternium-1 (polyquad)
 - a. Found in a number of dry eye products (Systane line and sooth XP)
 - b. Found in travaprost 0.003% (Izba- found in CA)
 - 2. Oxidizing preservatives
 - a. Sodium perborate (GenAqua and Dequest)

- i. Found in dry eye products (genteal and thera tears)
- b. Stabilized Oxychloro Complex (SOC) or Purite
 - i. Found in alphagan P
 - Ocupure, very close to Purite and used in some multidose dry eye preps
- c. Sofzia
 - i. Found in Travatan Z
- 3. Potassium sorbate
 - a. Xelpros
- b. Consider allergy or chemical toxicity
 - 1. May be BAK allergy or allergy to the active

medication

- a. PGAs- allergy rare, 1.5%
- b. B-blockers- contact dermatitis 11-13%
- c. Dorzolamide- 3% dermatitis & 4% conjunctivitis
- d. Brimonidine reported 9 & 11.5%
- c. Dosing-less is more when OSD present
 - i. Consider once daily dosing of glaucoma medications
 - ii. Take advantage of combination medications
- d. Preserved vs Non-preserved therapies
 - i. Therapeutic options for PF formulations
 - 1. Timolol PF (Timoptic Ocudose)
 - 2. PF Dorzolamide/Timolol (PF Cosopt)
 - 3. PF Tafluprost (Zioptan)
 - 4. Imprimis Rx
 - a. Multiple PF options for different agents, including multiple combo options
 - ii. Table with BAK free and NP options
 - iii. Downfall for NP options
 - 1. Cost and insurance coverage (5-10x)
 - 2. Waste from left over medication
 - Compliance an issue with correct usage and disposal; Single use, but pt will reuse → increase risk of infection
- 2. Identify and treat underlying inflammation
 - a. Look at Rx options (Restasis, xiidra, cequa, Klarity C)
 - b. Caution use of steroids in glaucoma patients
 - i. But when needed, PF steroids can be useful; watch IOP if prescribing
 - ii. Loteprednol better choice

- c. Ocular Rosacea
 - i. Lid hygiene (Cliradex)
 - ii. Oral doxycycline 50 mg, consider long term
 - iii. In office tx's (micro blepharoexfoliation, IPL, Lipiflow)
- 3. Punctal Occlusion
 - a. Can benefit both from dry eye but also allows for less systemic absorption = less side effects; possibly improved efficacy?
 - b. Temporary collagen vs permanent silicone vs cautery
 - c. Only consider if inflammation resolved/controlled
 - d. Keep allergy sufferers in mind; temp during non-allergy season may be a better option
- 4. Amniotic membranes
 - a. Dry w/ BCL
 - b. Cryo-preserved *C/l'd in tub shunts*
 - c. Amniotic fluid drops (regenereyes)
- 5. Autologous Serum Drops- Vital tears or local options (Well Health)
- 6. Tear stimulation via nasolacrimal nerve stimulation (True Tear)
- 4. Glaucoma
 - a. Review aqueous humor production and drainage pathway
 - i. Diagram of aqueous humor pathway
 - b. Treatment
 - i. 1mmHg IOP reduction decreases risk progression 10%
 - ii. Drops are often first line therapy for glaucoma
 - 1. Issues with glaucoma medications
 - a. Association between chronic topical PGA use with MGD
 - i. Prospective cross-sectional study showed that long term use of PGA is associated with obstructive MGD
 - b. Cross-sectional case controlled study showed that patients with multiple glaucoma medications had more unstable tear films and more severe drop out of their MGs.
 - c. Compliance
 - i. Non-compliance has been reported to be around 30%, with some as high as 80%
 - One study showed that only 24.2% of newly diagnosed glaucoma patients were compliant with their medications for 2 years
 - iii. As we increase the number of glaucoma medications, compliance decreases
 - d. New Topical Glaucoma medications and where they fall into dry
 - eye
 - i. Xelpros

1. Softer preservative

- iii. Nonsurgical Glaucoma Procedures to decrease drop dependence
 - 1. SLT earlier or first line

- a. Introduced in 1995 by Latina and Park, FDA approved 2001
 - i. Uses 532 nm Q switched, frequency-doubled, Nd:YAG laser, delivers pulse duration 3ns
 - ii. Targets melanin in the trabecular meshwork and increases aqueous flow through trabecular meshwork
 - iii. Uses 80-100 times less energy than ALT, less destructive
 - iv. Metanalysis shows 6.9-35.9% reduction IOP
 - v. Success in diurnal IOP fluctuation reduction 50%
 - vi. Studies show variability in length of effectiveness from 9-24months
 - vii. Found to be safe and effective to repeat laser if successful first treatment wears off with similar results to initial treatment
- b. Laser in Glaucoma and Ocular Hypertension Trial (LiGHT)
 - i. Treatment naïve patients
 - Eye specific targets (OHTN <25mmHg and 20% reduction, Mild <21mmHg and 20% reduction, Mod
 <18mmHg and 30% reduction, Severe <15mmHg and 30% reduction)
 - iii. SLT arm at target at more follow up appointments over 36 months than drop arm
 - iv. SLT arm showed less progression, fewer cataract and trabeculectomy surgeries
 - v. SLT more cost effective
 - vi. SLT and medications found equivalent health-related quality of life (HRQL)
- c. Garg et al. No difference between SLT and drops as initial therapy for 20% absolute drop in IOP
 - 74.6% of eyes treated primarily with SLT reached drop free IOP control at 36 months (either 1 or 2 SLT treatments)
- iv. Surgical Glaucoma Procedures to decrease drop dependence
 - 1. Predicated on sparing conjunctival tissue and leaving ocular surface unaltered
 - 2. Cataract Surgery
 - a. 2-4mmHg, can last 5 years
 - b. Increases facility of outflow following cataract extraction
 - i. Felt to be improved trabecular function, not increased access of aqueous to trabecular meshwork
 - ii. 3 hypothetical mechanisms
 - 1. Lens changes to outflow pathway
 - 2. Post -operative inflammation

 Fluidics of the surgery-forcing high volume of fluid under pressure through system increases it's patency

3. MIGs

- a. Trabecular microbypass stents
 - i. iStent
 - 1. First ab interno glaucoma implant
 - 2. Approved for mild-moderate open angle glaucoma
 - 3. FDA approval single implant only at time of cataract surgery
 - 4. Bypasses trabecular meshwork allowing aqueous to drain directly into Schlemm's Canal
 - Two implants more efficacious than one (mean IOP reduction 6.03mmHg vs. 4.67mmHg) (1.2 medication reduction vs. 0.97)
 - 6. likely led to 2 Inject implants being approved
 - 7. Adverse events 22.8%
 - a. IOP spike>stent
 blockage>malposition>hyphema>corne
 al event>formation PAS
 - ii. iStent Inject
 - 1. 2 heparin coated titamium stents implanted ab interno
 - 2. FDA approval two implants at time of cataract surgery
 - 3. Approved for mild to mod open angle glaucoma
 - 4. IOP reduction 8.52mmHg
- b. Schlemm's canal scaffold
 - i. Hydrus
 - 1. Nitinol (nickel-titanium alloy)
 - Dilates Schlemm's canal 4-5x natural width and has holes to keep from blocking collector channels
 - 3. FDA approved 2018 at time of cataract surgery
 - 4. Approved for mild to mod open angle glaucoma
 - 5. COMPARE study
 - a. 1 Hydrus vs. 2 iStents, standalone MIGS
 - For all time points up to 12 months Hydrus had higher IOP drop (1.7 vs. 1.0 mmHg, not SS) and fewer medications (-1.6 vs. 1 med), higher number of patients able to remain medication free (46.6% vs. 24%)

- 6. Comparable outcomes to canaloplasty
- HORIZON study showed increased IOP reduction and medication reduction at 24 months in cataract plus Hydrus vs. cataract alone (20% reduction in IOP in 77.3% vs. 57.8%) (7.6 vs. 5.3 mmHg reduction in IOP)
- 8. Adverse events include hyphema, malposition, corneal event, cyclodialysis, iridodialysis, formation PAS
- c. Ab interno Trabeculotomy
 - i. Trabectome
 - 1. FDA approved 2004
 - 2. Bipolar 550 kHz electrode with adjustable power to ablate 90-120 degrees
 - 3. 18-40% IOP reduction and 40% reduction in medications
 - 4. Adverse events similar to above
- d. Ab interno Canaloplasty (ABiC)
 - i. Approved for mild, mod, and severe glauocoma, with cataract surgery or standalone
 - ii. Can treat 360 degrees of Schlemm's canal
 - iii. >30% IOP reduction at 12 months
- e. Goniotomy/Trabeculotomy (Kahook Dual Blade, Trabectome, OMNI)
 - i. Approved for mild, mod, and severe glaucoma, with cataract surgery or standalone
 - ii. Can perform synechiolysis at time of surgery
 - iii. Kahook Dual Blade
 - 1. Removes strip of TM 3-4 clockhours
 - 2. 12 month data: 26.2% mean IOP reduction
 - 3. 50% reduction in medications
 - 4. Adverse events rare and self limited and include IOP spike, hyphema, corneal event, iridodialysis
 - iv. Trabectome
 - 1. FDA approved 2004
 - 2. Bipolar 550 kHz electrode with adjustable power to ablate 90-120 degrees
 - 3. 18-40% IOP reduction and 40% reduction in medications
 - 4. Adverse events similar to above
- f. Endoscopic cyclophotocoagulation (ECP)
 - i. Endoscopic probe with up to 2.0W diode laser
 - ii. Treatment of at least 270 degrees
 - iii. Over 30% reduction in IOP

- iv. Has been shown to be effective in refractory glaucomas that had failed prior filtration surgery
- v. Adverse events IOP spike>cataract>hyphema>CME
- c. Current Studies/emerging therapeutics
 - i. iDose/injectable bimatoprost/bimatoprost ring/travaprost plugs etc
 - ii. Gel forming drops
 - 1. Brimonidine in rabbit models, lasts 28 days
 - iii. Bimatoprost Ring
 - 1. Phase II studies
 - 2. Releases over 6 months
 - 3. 20% IOP reduction
 - 4. Noninferior to timolol
 - 5. 89% retention of ring at 6 months
 - iv. Punctal plugs
 - 1. OTX-TP
 - a. PF travaprost
 - b. Expands when hydrated and lasts 3 months
 - c. Sits below punctum but contains fluorescein so can be visualized
 - d. Phase II studies show 88% retention at 75 days and slightly inferior to timolol
 - 2. Evolute
 - a. Latanaprost core
 - b. Phase II studies show 20% reduction IOP and 92% retention at 3 months
 - v. Subconjunctival implants
 - 1. Durasert
 - a. Transparent polymer tube that elutes latanoprost over 12 months
 - b. Phase I and II trials underway
 - vi. Injectables
 - 1. Subconj, intravitreal, suprachoroidal
 - 2. Most involve prostaglandins
 - vii. Intracameral implants
 - 1. Bimatoprost SR
 - a. Phase I and II studies show similar efficacy to topical bimatoprost and 71% effects lasted 6 months
 - 2. Travaprost XR
 - a. In phase II studies, showed noninferiority to timolol
 - b. 25% IOP reduction at 11 months
 - 3. iDose travaprost implant
 - a. Implantable titanium reservoir is secured in angle-this can be removed and replaced
 - b. Phase II studies show noninferiority to timolol

- i. 30% reduction from baseline IOP at 1 year
- ii. 2 drug elution rates-18 and 36 months
- iii. No hyperemia reported yet
- iv. Currently in Phase III trials
- viii. Intrascleral implants
 - 1. Ophthalmic Micropump
 - a. Resembles the plate of a tube shunt
 - b. Contains a refillable reservoir and small computer
 - c. Connects to a valved intrascleral tube that delivers nanoliter doses of medication into the eye
 - d. Wirelessly chargeable and programmable
 - e. In preclinical studies at this time
- d. Case studies to put topics together in a clinical picture